Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 96
Filtrar
1.
Dev Cell ; 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38569548

RESUMO

The Drosophila larval ventral nerve cord (VNC) shares many similarities with the spinal cord of vertebrates and has emerged as a major model for understanding the development and function of motor systems. Here, we use high-quality scRNA-seq, validated by anatomical identification, to create a comprehensive census of larval VNC cell types. We show that the neural lineages that comprise the adult VNC are already defined, but quiescent, at the larval stage. Using fluorescence-activated cell sorting (FACS)-enriched populations, we separate all motor neuron bundles and link individual neuron clusters to morphologically characterized known subtypes. We discovered a glutamate receptor subunit required for basal neurotransmission and homeostasis at the larval neuromuscular junction. We describe larval glia and endorse the general view that glia perform consistent activities throughout development. This census represents an extensive resource and a powerful platform for future discoveries of cellular and molecular mechanisms in repair, regeneration, plasticity, homeostasis, and behavioral coordination.

2.
Clin Exp Med ; 24(1): 84, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38662111

RESUMO

The study of neuroimmune crosstalk and the involvement of neurotransmitters in inflammation and bone health has illustrated their significance in joint-related conditions. One important mode of cell-to-cell communication in the synovial fluid (SF) is through extracellular vesicles (EVs) carrying microRNAs (miRNAs). The role of neurotransmitter receptors in the pathogenesis of inflammatory joint diseases, and whether there are specific miRNAs regulating differentially expressed HTR2A, contributing to the inflammatory processes and bone metabolism is unclear. Expression of neurotransmitter receptors and their correlated inflammatory molecules were identified in rheumatoid arthritis (RA) and osteoarthritis (OA) synovium from a scRNA-seq dataset. Immunohistochemistry staining of synovial tissue (ST) from RA and OA patients was performed for validation. Expression of miRNAs targeting HTR2A carried by SF EVs was screened in low- and high-grade inflammation RA from a public dataset and validated by qPCR. HTR2A reduction by target miRNAs was verified by miRNAs mimics transfection into RA fibroblasts. HTR2A was found to be highly expressed in fibroblasts derived from RA synovial tissue. Its expression showed a positive correlation with the degree of inflammation observed. 5 miRNAs targeting HTR2A were decreased in RA SF EVs compared to OA, three of which, miR-214-3p, miR-3120-5p and miR-615-3p, mainly derived from monocytes in the SF, were validated as regulators of HTR2A expression. The findings suggest that fibroblast HTR2A may play a contributory role in inflammation and the pathogenesis of RA. Additionally, targeting miRNAs that act upon HTR2A could present novel therapeutic strategies for alleviating inflammation in RA.


Assuntos
Artrite Reumatoide , Fibroblastos , MicroRNAs , Osteoartrite , Artrite Reumatoide/metabolismo , Artrite Reumatoide/patologia , Artrite Reumatoide/genética , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Fibroblastos/metabolismo , Fibroblastos/patologia , Osteoartrite/metabolismo , Osteoartrite/genética , Osteoartrite/patologia , Receptor 5-HT2A de Serotonina/metabolismo , Receptor 5-HT2A de Serotonina/genética , Membrana Sinovial/metabolismo , Membrana Sinovial/patologia , Inflamação/metabolismo , Líquido Sinovial/metabolismo , Vesículas Extracelulares/metabolismo , Regulação da Expressão Gênica , Feminino
3.
Neuron ; 112(6): 942-958.e13, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38262414

RESUMO

Neurons express various combinations of neurotransmitter receptor (NR) subunits and receive inputs from multiple neuron types expressing different neurotransmitters. Localizing NR subunits to specific synaptic inputs has been challenging. Here, we use epitope-tagged endogenous NR subunits, expansion light-sheet microscopy, and electron microscopy (EM) connectomics to molecularly characterize synapses in Drosophila. We show that in directionally selective motion-sensitive neurons, different multiple NRs elaborated a highly stereotyped molecular topography with NR localized to specific domains receiving cell-type-specific inputs. Developmental studies suggested that NRs or complexes of them with other membrane proteins determine patterns of synaptic inputs. In support of this model, we identify a transmembrane protein selectively associated with a subset of spatially restricted synapses and demonstrate its requirement for synapse formation through genetic analysis. We propose that mechanisms that regulate the precise spatial distribution of NRs provide a molecular cartography specifying the patterns of synaptic connections onto dendrites.


Assuntos
Conectoma , Sinapses/fisiologia , Neurônios Motores/metabolismo , Microscopia Eletrônica , Receptores de GABA-A/metabolismo
4.
Front Mol Neurosci ; 16: 1281653, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37727512

RESUMO

[This corrects the article DOI: 10.3389/fnmol.2023.1232795.].

5.
Front Mol Neurosci ; 16: 1232795, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37602191

RESUMO

Postsynaptic neurotransmitter receptors and their associated scaffolding proteins assemble into discrete, nanometer-scale subsynaptic domains (SSDs) within the postsynaptic membrane at both excitatory and inhibitory synapses. Intriguingly, postsynaptic receptor SSDs are mirrored by closely apposed presynaptic active zones. These trans-synaptic molecular assemblies are thought to be important for efficient neurotransmission because they concentrate postsynaptic receptors near sites of presynaptic neurotransmitter release. While previous studies have characterized the role of synaptic activity in sculpting the number, size, and distribution of postsynaptic SSDs at established synapses, it remains unknown whether neurotransmitter signaling is required for their initial assembly during synapse development. Here, we evaluated synaptic nano-architecture under conditions where presynaptic neurotransmitter release was blocked prior to, and throughout synaptogenesis with tetanus neurotoxin (TeNT). In agreement with previous work, neurotransmitter release was not required for the formation of excitatory or inhibitory synapses. The overall size of the postsynaptic specialization at both excitatory and inhibitory synapses was reduced at chronically silenced synapses. However, both AMPARs and GABAARs still coalesced into SSDs, along with their respective scaffold proteins. Presynaptic active zone assemblies, defined by RIM1, were smaller and more numerous at silenced synapses, but maintained alignment with postsynaptic AMPAR SSDs. Thus, basic features of synaptic nano-architecture, including assembly of receptors and scaffolds into trans-synaptically aligned structures, are intrinsic properties that can be further regulated by subsequent activity-dependent mechanisms.

6.
Mol Biol Rep ; 50(8): 6529-6542, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37330941

RESUMO

BACKGROUND: Gastric cancer (GC) is the fifth most common cancer worldwide and the most commonly diagnosed cancer in Iran. The nervous system provides proximity to tumor cells by releasing neurotransmitters such as dopamine and presenting them to the corresponding receptor-bearing tumors. While nerve fibers infiltrate the tumor microenvironment, little is known about the expression levels of dopamine (DA), dopamine receptors (DRs), and catechol-O-methyltransferase (COMT) in GC patients. METHODS: DRs and COMT expression were analyzed in 45 peripheral blood mononuclear cells (PBMCs) and 20 paired tumor and adjacent tissue of GC patients by quantitative polymerase chain reaction. DA was measured in plasma specimens using enzyme-linked immunosorbent assay. Protein-protein interaction analysis was carried out to identify GC-related hub genes. RESULTS: Increased expression of DRD1-DRD3 was found in tumor specimens compared with adjacent non-cancerous specimens (P < 0.05). A positive correlation was found between DRD1 and DRD3 expression (P = 0.009); DRD2 and DRD3 expression (P = 0.04). Plasma levels of dopamine were significantly lower in patients (1298 pg/ml) than in controls (4651 pg/ml). DRD1-DRD4 and COMT were up-regulated in PBMCs of patients compared with controls (P < 0.0001). Bioinformatic analyses showed 30 hub genes associated with Protein kinase A and extracellular signal-regulated kinase signaling pathways. CONCLUSIONS: The findings indicated dysregulation of DRs and COMT mRNA expression in GC and suggest that the brain- gastrointestinal axis may mediate gastric cancer development. Network analysis revealed that combination treatments could be considered for optimizing and improving the precision treatment of GC.


Assuntos
Dopamina , Neoplasias Gástricas , Humanos , Dopamina/genética , Catecol O-Metiltransferase/genética , Neoplasias Gástricas/genética , Leucócitos Mononucleares , Receptores Dopaminérgicos/genética , Microambiente Tumoral
7.
Oncology ; 101(7): 415-424, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37231904

RESUMO

INTRODUCTION: Gastric cancer is one of the common causes of cancer-related death in the world. Neurotransmitters have recently been related to the proliferation of cancer cells, but the role of neurotransmitters in the progression of gastric cancer is still unexplored. The cross-talk between the nervous system and immune cells through serotonin and its receptors in the tumor microenvironment can impact tumor progress. Our purpose is to expose probable changes in serotonin receptors, acetylcholinesterase, and monoamine oxidase A gene expression in gastric cancer. METHODS: Transcript of serotonin receptors (5-HTR2A, 5-HTR2B, 5-HTR3A, 5-HTR7) and monoamine oxidase A genes in the peripheral blood mononuclear cells (40 patients and 40 control) and tissue (21 tumors and 21 normal adjacent tissues) were assessed. The gene expression was analyzed by quantitative real-time PCR using suitable primers. Statistical analysis was performed using appropriate software (REST, Prism). RESULTS: Significantly higher amounts of 5-HTR2A, 5-HTR2B, 5-HTR3A, 5-HTR7, and acetylcholinesterase gene transcripts were found in the peripheral blood of gastric cancer patients compared with healthy individuals. The expression of 5-HTR2B and 5-HTR3A genes was significantly higher (p = 0.0250, p = 0.0005, respectively) and the acetylcholinesterase gene was lower in the tissue of patients (p = 0.0119) compared with adjacent normal tissue. CONCLUSION: This study highlights the role of serotonin receptors in gastric cancer that might have suggestions for the development of novel therapeutics and defensive approaches that target factors associated with the link between the nervous system, cancer cells, and the tumor microenvironment.


Assuntos
Acetilcolinesterase , Neoplasias Gástricas , Humanos , Acetilcolinesterase/genética , Neoplasias Gástricas/genética , Microambiente Tumoral/genética , Leucócitos Mononucleares , Receptores de Serotonina/genética , Receptores de Serotonina/metabolismo , Expressão Gênica , Monoaminoxidase/genética
8.
Theranostics ; 13(3): 1109-1129, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36793869

RESUMO

While psychological factors have long been linked to breast cancer pathogenesis and outcomes, accumulating evidence is revealing how the nervous system contributes to breast cancer development, progression, and treatment resistance. Central to the psychological-neurological nexus are interactions between neurotransmitters and their receptors expressed on breast cancer cells and other types of cells in the tumor microenvironment, which activate various intracellular signaling pathways. Importantly, the manipulation of these interactions is emerging as a potential avenue for breast cancer prevention and treatment. However, an important caveat is that the same neurotransmitter can exert multiple and sometimes opposing effects. In addition, certain neurotransmitters can be produced and secreted by non-neuronal cells including breast cancer cells that similarly activate intracellular signaling upon binding to their receptors. In this review we dissect the evidence for the emerging paradigm linking neurotransmitters and their receptors with breast cancer. Foremost, we explore the intricacies of such neurotransmitter-receptor interactions, including those that impinge on other cellular components of the tumor microenvironment, such as endothelial cells and immune cells. Moreover, we discuss findings where clinical agents used to treat neurological and/or psychological disorders have exhibited preventive/therapeutic effects against breast cancer in either associative or pre-clinical studies. Further, we elaborate on the current progress to identify druggable components of the psychological-neurological nexus that can be exploited for the prevention and treatment of breast cancer as well as other tumor types. We also provide our perspectives regarding future challenges in this field where multidisciplinary cooperation is a paramount requirement.


Assuntos
Neoplasias da Mama , Humanos , Feminino , Neoplasias da Mama/prevenção & controle , Células Endoteliais/metabolismo , Neurotransmissores , Transdução de Sinais , Microambiente Tumoral
9.
ACS Chem Neurosci ; 14(4): 527-553, 2023 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-36724132

RESUMO

Multiple sclerosis (MS) is a chronic inflammatory and neurodegenerative disease of the central nervous system (CNS). Although emerging evidence has shown that changes in neurotransmitter levels in the synaptic gap may contribute to the pathophysiology of MS, their specific role has not been elucidated yet. In this review, we aim to analyze preclinical and clinical evidence on the structural and functional changes in neurotransmitters in MS and critically discuss their potential role in MS pathophysiology. Preclinical studies have demonstrated that alterations in glutamate metabolism may contribute to MS pathophysiology, by causing excitotoxic neuronal damage. Dysregulated interaction between glutamate and GABA results in synaptic loss. The GABAergic system also plays an important role, by regulating the activity and plasticity of neural networks. Targeting GABAergic/glutamatergic transmission may be effective in fatigue and cognitive impairment in MS. Acetylcholine (ACh) and dopamine can also affect the T-mediated inflammatory responses, thereby being implicated in MS-related neuroinflammation. Also, melatonin might affect the frequency of relapses in MS, by regulating the sleep-wake cycle. Increased levels of nitric oxide in inflammatory lesions of MS patients may be also associated with axonal neuronal degeneration. Therefore, neurotransmitter imbalance may be critically implicated in MS pathophysiology, and future studies are needed for our deeper understanding of their role in MS.


Assuntos
Esclerose Múltipla , Doenças Neurodegenerativas , Humanos , Esclerose Múltipla/metabolismo , Inflamação/metabolismo , Neurotransmissores , Ácido Glutâmico/metabolismo
10.
Behav Brain Res ; 438: 114174, 2023 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-36283568

RESUMO

Alpha-synucleinopathies, such as Parkinson's disease, dementia with Lewy bodies and multiple system atrophy, are characterized by aberrant accumulation of alpha-synuclein and synaptic dysfunction leading to motor and cognitive deficits. Animal models of alpha-synucleinopathy have greatly facilitated the mechanistic understanding of the disease and the development of therapeutics. Various transgenic, alpha-synuclein fibril-injected, and toxin-injected animal models of Parkinson's disease and multiple system atrophy that recapitulate the disease pathology have been developed and widely used. Recent advances in positron emission tomography have allowed the noninvasive visualization of molecular alterations, underpinning behavioral dysfunctions in the brains of animal models and the longitudinal monitoring of treatment effects. Imaging studies in these disease animal models have employed multi-tracer PET designs to reveal dopaminergic deficits together with other molecular alterations. This review focuses on the development of new positron emission tomography tracers and studies of alpha-synuclein, synaptic vesicle glycoprotein 2A neurotransmitter receptor deficits such as dopaminergic receptor, dopaminergic transporter, serotonergic receptor, vesicular monoamine transporter 2, hypometabolism, neuroinflammation, mitochondrial dysfunction and leucine rich repeat kinase 2 in animal models of Parkinson's disease. The outstanding challenges and emerging applications are outlined, such as investigating the gut-brain-axis by using positron emission tomography in animal models, and provide a future outlook.


Assuntos
Atrofia de Múltiplos Sistemas , Doença de Parkinson , Animais , alfa-Sinucleína , Doença de Parkinson/diagnóstico por imagem , Doença de Parkinson/patologia , Modelos Animais de Doenças , Tomografia por Emissão de Pósitrons
11.
Expert Opin Ther Pat ; 33(12): 875-899, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38165255

RESUMO

INTRODUCTION: Tropane-derived medications have historically played a substantial role in pharmacotherapy. Both natural and synthetic derivatives of tropane find application in addressing diverse medical conditions. Prominent examples of tropane-based drugs include hyoscine butylbromide, recognized for its antispasmodic properties, atropine, employed as a mydriatic, maraviroc, known for its antiviral effects. trospium chloride, utilized as a spasmolytic for overactive bladder, and ipratropium, a bronchodilator. AREAS COVERED: We compiled patents pertaining to the biological activity of substances containing tropane up to the year 2023 and categorized them according to the specific type of biological activity they exhibit. ScienceFinder, ScienceDirect, and Patent Guru were used to search for scientific articles and patent literature up to 2023. EXPERT OPINION: Pharmaceutical researchers in academic and industrial settings have shown considerable interest in tropane derivatives. Despite this, there remains a substantial amount of work to be undertaken. A focused approach is warranted for the exploration and advancement of both natural and synthetic bioactive molecules containing tropane, facilitated through collaborative efforts between academia and industry. Leveraging contemporary techniques and technologies in medicinal and synthetic chemistry, including high throughput screening, drug repurposing,and biotechnological engineering, holds the potential to unveil novel possibilities and accelerate the drug discovery process for innovative tropane-based pharmaceuticals.


Assuntos
Desenho de Fármacos , Patentes como Assunto , Tropanos , Humanos , Atropina , Descoberta de Drogas , Tropanos/farmacologia
12.
Membranes (Basel) ; 12(8)2022 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-36005727

RESUMO

Compartmentalization, together with transbilayer and lateral asymmetries, provide the structural foundation for functional specializations at the cell surface, including the active role of the lipid microenvironment in the modulation of membrane-bound proteins. The chemical synapse, the site where neurotransmitter-coded signals are decoded by neurotransmitter receptors, adds another layer of complexity to the plasma membrane architectural intricacy, mainly due to the need to accommodate a sizeable number of molecules in a minute subcellular compartment with dimensions barely reaching the micrometer. In this review, we discuss how nature has developed suitable adjustments to accommodate different types of membrane-bound receptors and scaffolding proteins via membrane microdomains, and how this "effort-sharing" mechanism has evolved to optimize crosstalk, separation, or coupling, where/when appropriate. We focus on a fast ligand-gated neurotransmitter receptor, the nicotinic acetylcholine receptor, and a second-messenger G-protein coupled receptor, the cannabinoid receptor, as a paradigmatic example.

13.
Mol Neurobiol ; 59(10): 6076-6090, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35859025

RESUMO

The α7 nicotinic acetylcholine receptor (nAChR) is present in neuronal and non-neuronal cells and has anti-inflammatory actions. Molecular dynamics simulations suggested that α7 nAChR interacts with a region of the SARS-CoV-2 spike protein (S), and a potential contribution of nAChRs to COVID-19 pathophysiology has been proposed. We applied whole-cell and single-channel recordings to determine whether a peptide corresponding to the Y674-R685 region of the S protein can directly affect α7 nAChR function. The S fragment exerts a dual effect on α7. It activates α7 nAChRs in the presence of positive allosteric modulators, in line with our previous molecular dynamics simulations showing favourable binding of this accessible region of the S protein to the nAChR agonist binding site. The S fragment also exerts a negative modulation of α7, which is evidenced by a profound concentration-dependent decrease in the durations of openings and activation episodes of potentiated channels and in the amplitude of macroscopic responses elicited by ACh. Our study identifies a potential functional interaction between α7 nAChR and a region of the S protein, thus providing molecular foundations for further exploring the involvement of nAChRs in COVID-19 pathophysiology.


Assuntos
COVID-19 , Glicoproteína da Espícula de Coronavírus , Receptor Nicotínico de Acetilcolina alfa7 , Humanos , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus/metabolismo , Receptor Nicotínico de Acetilcolina alfa7/metabolismo
14.
Hum Brain Mapp ; 43(17): 5235-5249, 2022 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-35796178

RESUMO

Arterial spin labelling (ASL) plays an increasingly important role in neuroimaging pain research but does not provide molecular insights regarding how regional cerebral blood flow (rCBF) relates to underlying neurotransmission. Here, we integrate ASL with positron emission tomography (PET) and brain transcriptome data to investigate the molecular substrates of rCBF underlying clinically relevant pain states. Two data sets, representing acute and chronic ongoing pain respectively, were utilised to quantify changes in rCBF; one examining pre-surgical versus post-surgical pain, and the second comparing patients with painful hand Osteoarthritis to a group of matched controls. We implemented a whole-brain spatial correlation analysis to explore associations between change in rCBF (ΔCBF) and neurotransmitter receptor distributions derived from normative PET templates. Additionally, we utilised transcriptomic data from the Allen Brain Atlas to inform distributions of receptor expression. Both datasets presented significant correlations of ΔCBF with the µ-opioid and dopamine-D2 receptor expressions, which play fundamental roles in brain activity associated with pain experiences. ΔCBF also correlated with the gene expression distributions of several receptors involved in pain processing. Overall, this is the first study illustrating the molecular basis of ongoing pain ASL indices and emphasises the potential of rCBF as a biomarker in pain research.


Assuntos
Circulação Cerebrovascular , Dor Crônica , Humanos , Circulação Cerebrovascular/fisiologia , Marcadores de Spin , Tomografia por Emissão de Pósitrons , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Imageamento por Ressonância Magnética/métodos , Fluxo Sanguíneo Regional
15.
Front Immunol ; 13: 756928, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35359970

RESUMO

Many epidemiological reports have indicated an increase in the incidence of breast cancer among psychotic patients, suggesting that the targets of antipsychotics, neurotransmitter receptors, may have a role in tumorigenesis. However, the functions of neurotransmitter receptors in cancer are barely known. Here, we analyzed 44 neurotransmitter receptors in breast cancer and revealed that the expression of 34 receptors was positively correlated with relapse-free survival rates (RFS) of patients using the public database (n = 3951). Among all these receptors, we revealed decreased expression of HTR6 in human advanced breast cancer versus tumors in situ using our original data (n = 44). After a pan-cancer analysis including 22 cancers (n = 11262), we disclosed that HTR6 was expressed in 12 tumors and uncovered its influence on survival in seven tumors. Using multi-omics datasets from Linkedomics, we revealed a potential regulatory role of HTR6 in MAPK, JUN, and leukocyte-differentiation pathways through enriching 294 co-expressed phosphorylated proteins of HTR6. Furthermore, we proclaimed a close association of HTR6 expression with the immune microenvironment. Finally, we uncovered two possible reasons for HTR6 down-regulation in breast cancer, including deep deletion in the genome and the up-regulation of FOXA1 in breast cancer, which was a potential negatively regulatory transcription factor of HTR6. Taken together, we revealed a new function of neurotransmitter receptors in breast cancer and identified HTR6 as a survival-related gene potentially regulating the immune microenvironment. The findings in our study would improve our understanding of the pathogenesis of breast cancer and provided a theoretical basis for personalized medication in psychotic patients.


Assuntos
Neoplasias da Mama , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Feminino , Humanos , Recidiva Local de Neoplasia , Receptores de Neurotransmissores/genética , Microambiente Tumoral/genética
16.
Bull Exp Biol Med ; 172(5): 528-533, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35348960

RESUMO

Impairment of reconsolidation of conditioned food aversion memory led to the development of a specific anterograde amnesia: repeated training of amnestic snails did not induce long-term memory formation. DNA demethylation caused by injections of DNA methyltransferase inhibitor (DNAMT) during repeated training led to long-term memory formation. Injections of an NMDA glutamate receptor antagonist or a serotonin receptor antagonist prevented memory formation induced by administration of DNAMT inhibitor and repeated training. We hypothesize that methylation-dependent repression of neuronal genes underlies anterograde amnesia. Demethylation eliminated the blockade of these genes and created conditions for long-term memory formation, the induction mechanisms of which involve neurotransmitter receptors.


Assuntos
Amnésia Anterógrada , Amnésia/induzido quimicamente , Amnésia/genética , Animais , Aprendizagem da Esquiva , Metilação de DNA , Caracois Helix/fisiologia , Receptores de N-Metil-D-Aspartato/metabolismo , Receptores de Neurotransmissores
17.
Neural Regen Res ; 17(8): 1785-1794, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35017439

RESUMO

Human umbilical cord mesenchymal stem cells (hUC-MSCs) are a promising candidate for spinal cord injury (SCI) repair owing to their advantages of low immunogenicity and easy accessibility over other MSC sources. However, modest clinical efficacy hampered the progression of these cells to clinical translation. This discrepancy may be due to many variables, such as cell source, timing of implantation, route of administration, and relevant efficacious cell dose, which are critical factors that affect the efficacy of treatment of patients with SCI. Previously, we have evaluated the safety and efficacy of 4 × 106 hUC-MSCs/kg in the treatment of subacute SCI by intrathecal implantation in rat models. To search for a more accurate dose range for clinical translation, we compared the effects of three different doses of hUC-MSCs - low (0.25 × 106 cells/kg), medium (1 × 106 cells/kg) and high (4 × 106 cells/kg) - on subacute SCI repair through an elaborate combination of behavioral analyses, anatomical analyses, magnetic resonance imaging-diffusion tensor imaging (MRI-DTI), biotinylated dextran amine (BDA) tracing, electrophysiology, and quantification of mRNA levels of ion channels and neurotransmitter receptors. Our study demonstrated that the medium dose, but not the low dose, is as efficient as the high dose in producing the desired therapeutic outcomes. Furthermore, partial restoration of the γ-aminobutyric acid type A (GABAA) receptor expression by the effective doses indicates that GABAA receptors are possible candidates for therapeutic targeting of dormant relay pathways in injured spinal cord. Overall, this study revealed that intrathecal implantation of 1 × 106 hUC-MSCs/kg is an alternative approach for treating subacute SCI.

18.
Biomedicines ; 11(1)2022 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-36672549

RESUMO

The cross talk between neurons and glial cells during development, adulthood, and disease, has been extensively documented. Among the molecules mediating these interactions, neurotransmitters play a relevant role both in myelinating and non-myelinating glial cells, thus resulting as additional candidates regulating the development and physiology of the glial cells. In this review, we summarise the contribution of the main neurotransmitter receptors in the regulation of the morphogenetic events of glial cells, with particular attention paid to the role of acetylcholine receptors in Schwann cell physiology. In particular, the M2 muscarinic receptor influences Schwann cell phenotype and the α7 nicotinic receptor is emerging as influential in the modulation of peripheral nerve regeneration and inflammation. This new evidence significantly improves our knowledge of Schwann cell development and function and may contribute to identifying interesting new targets to support the activity of these cells in pathological conditions.

19.
Brain ; 145(5): 1785-1804, 2022 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-34605898

RESUMO

Alzheimer's disease involves many neurobiological alterations from molecular to macroscopic spatial scales, but we currently lack integrative, mechanistic brain models characterizing how factors across different biological scales interact to cause clinical deterioration in a way that is subject-specific or personalized. As important signalling molecules and mediators of many neurobiological interactions, neurotransmitter receptors are promising candidates for identifying molecular mechanisms and drug targets in Alzheimer's disease. We present a neurotransmitter receptor-enriched multifactorial brain model, which integrates spatial distribution patterns of 15 neurotransmitter receptors from post-mortem autoradiography with multiple in vivo neuroimaging modalities (tau, amyloid-ß and glucose PET, and structural, functional and arterial spin labelling MRI) in a personalized, generative, whole-brain formulation. In a heterogeneous aged population (n = 423, ADNI data), models with personalized receptor-neuroimaging interactions showed a significant improvement over neuroimaging-only models, explaining about 70% (±20%) of the variance in longitudinal changes to the six neuroimaging modalities. In Alzheimer's disease patients (n = 25, ADNI data), receptor-imaging interactions explained up to 39.7% (P < 0.003, family-wise error-rate-corrected) of inter-individual variability in cognitive deterioration, via an axis primarily affecting executive function. Notably, based on their contribution to the clinical severity in Alzheimer's disease, we found significant functional alterations to glutamatergic interactions affecting tau accumulation and neural activity dysfunction and GABAergic interactions concurrently affecting neural activity dysfunction, amyloid and tau distributions, as well as significant cholinergic receptor effects on tau accumulation. Overall, GABAergic alterations had the largest effect on cognitive impairment (particularly executive function) in our Alzheimer's disease cohort (n = 25). Furthermore, we demonstrate the clinical applicability of this approach by characterizing subjects based on individualized 'fingerprints' of receptor alterations. This study introduces the first robust, data-driven framework for integrating several neurotransmitter receptors, multimodal neuroimaging and clinical data in a flexible and interpretable brain model. It enables further understanding of the mechanistic neuropathological basis of neurodegenerative progression and heterogeneity, and constitutes a promising step towards implementing personalized, neurotransmitter-based treatments.


Assuntos
Doença de Alzheimer , Encéfalo , Disfunção Cognitiva , Idoso , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/metabolismo , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Disfunção Cognitiva/patologia , Humanos , Imageamento por Ressonância Magnética/métodos , Neuroimagem/métodos , Tomografia por Emissão de Pósitrons/métodos , Receptores de Neurotransmissores , Proteínas tau/metabolismo
20.
Oxf Open Neurosci ; 1: kvac010, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-38596706

RESUMO

Adenosine-to-inosine (A-to-I) RNA editing is a post-transcriptional modification that diversifies protein functions by recoding RNA or alters protein quantity by regulating mRNA level. A-to-I editing is catalyzed by adenosine deaminases that act on RNA. Millions of editing sites have been reported, but they are mostly found in non-coding sequences. However, there are also several recoding editing sites in transcripts coding for ion channels or transporters that have been shown to play important roles in physiology and changes in editing level are associated with neurological diseases. These editing sites are not only found to be evolutionary conserved across species, but they are also dynamically regulated spatially, developmentally and by environmental factors. In this review, we discuss the current knowledge of A-to-I RNA editing of ion channels and receptors in the context of their roles in physiology and pathological disease. We also discuss the regulation of editing events and site-directed RNA editing approaches for functional study that offer a therapeutic pathway for clinical applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...